\(\int \frac {(a A+(A b+a B) \cos (c+d x)+b B \cos ^2(c+d x)) \sqrt {\sec (c+d x)}}{\sqrt {a+a \cos (c+d x)}} \, dx\) [528]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [A] (verified)
   Fricas [A] (verification not implemented)
   Sympy [F]
   Maxima [F]
   Giac [F(-1)]
   Mupad [F(-1)]

Optimal result

Integrand size = 54, antiderivative size = 192 \[ \int \frac {\left (a A+(A b+a B) \cos (c+d x)+b B \cos ^2(c+d x)\right ) \sqrt {\sec (c+d x)}}{\sqrt {a+a \cos (c+d x)}} \, dx=\frac {(2 A b+2 a B-b B) \arcsin \left (\frac {\sqrt {a} \sin (c+d x)}{\sqrt {a+a \cos (c+d x)}}\right ) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}}{\sqrt {a} d}+\frac {\sqrt {2} (a-b) (A-B) \arctan \left (\frac {\sqrt {a} \sin (c+d x)}{\sqrt {2} \sqrt {\cos (c+d x)} \sqrt {a+a \cos (c+d x)}}\right ) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}}{\sqrt {a} d}+\frac {b B \sin (c+d x)}{d \sqrt {a+a \cos (c+d x)} \sqrt {\sec (c+d x)}} \]

[Out]

b*B*sin(d*x+c)/d/(a+a*cos(d*x+c))^(1/2)/sec(d*x+c)^(1/2)+(2*A*b+2*B*a-B*b)*arcsin(sin(d*x+c)*a^(1/2)/(a+a*cos(
d*x+c))^(1/2))*cos(d*x+c)^(1/2)*sec(d*x+c)^(1/2)/d/a^(1/2)+(a-b)*(A-B)*arctan(1/2*sin(d*x+c)*a^(1/2)*2^(1/2)/c
os(d*x+c)^(1/2)/(a+a*cos(d*x+c))^(1/2))*2^(1/2)*cos(d*x+c)^(1/2)*sec(d*x+c)^(1/2)/d/a^(1/2)

Rubi [A] (verified)

Time = 1.06 (sec) , antiderivative size = 192, normalized size of antiderivative = 1.00, number of steps used = 7, number of rules used = 7, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.130, Rules used = {4306, 3124, 3061, 2861, 211, 2853, 222} \[ \int \frac {\left (a A+(A b+a B) \cos (c+d x)+b B \cos ^2(c+d x)\right ) \sqrt {\sec (c+d x)}}{\sqrt {a+a \cos (c+d x)}} \, dx=\frac {(2 a B+2 A b-b B) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \arcsin \left (\frac {\sqrt {a} \sin (c+d x)}{\sqrt {a \cos (c+d x)+a}}\right )}{\sqrt {a} d}+\frac {\sqrt {2} (a-b) (A-B) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \arctan \left (\frac {\sqrt {a} \sin (c+d x)}{\sqrt {2} \sqrt {\cos (c+d x)} \sqrt {a \cos (c+d x)+a}}\right )}{\sqrt {a} d}+\frac {b B \sin (c+d x)}{d \sqrt {\sec (c+d x)} \sqrt {a \cos (c+d x)+a}} \]

[In]

Int[((a*A + (A*b + a*B)*Cos[c + d*x] + b*B*Cos[c + d*x]^2)*Sqrt[Sec[c + d*x]])/Sqrt[a + a*Cos[c + d*x]],x]

[Out]

((2*A*b + 2*a*B - b*B)*ArcSin[(Sqrt[a]*Sin[c + d*x])/Sqrt[a + a*Cos[c + d*x]]]*Sqrt[Cos[c + d*x]]*Sqrt[Sec[c +
 d*x]])/(Sqrt[a]*d) + (Sqrt[2]*(a - b)*(A - B)*ArcTan[(Sqrt[a]*Sin[c + d*x])/(Sqrt[2]*Sqrt[Cos[c + d*x]]*Sqrt[
a + a*Cos[c + d*x]])]*Sqrt[Cos[c + d*x]]*Sqrt[Sec[c + d*x]])/(Sqrt[a]*d) + (b*B*Sin[c + d*x])/(d*Sqrt[a + a*Co
s[c + d*x]]*Sqrt[Sec[c + d*x]])

Rule 211

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]/a)*ArcTan[x/Rt[a/b, 2]], x] /; FreeQ[{a, b}, x]
&& PosQ[a/b]

Rule 222

Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Simp[ArcSin[Rt[-b, 2]*(x/Sqrt[a])]/Rt[-b, 2], x] /; FreeQ[{a, b}
, x] && GtQ[a, 0] && NegQ[b]

Rule 2853

Int[Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]/Sqrt[(d_.)*sin[(e_.) + (f_.)*(x_)]], x_Symbol] :> Dist[-2/f, Su
bst[Int[1/Sqrt[1 - x^2/a], x], x, b*(Cos[e + f*x]/Sqrt[a + b*Sin[e + f*x]])], x] /; FreeQ[{a, b, d, e, f}, x]
&& EqQ[a^2 - b^2, 0] && EqQ[d, a/b]

Rule 2861

Int[1/(Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]*Sqrt[(c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]]), x_Symbol] :> D
ist[-2*(a/f), Subst[Int[1/(2*b^2 - (a*c - b*d)*x^2), x], x, b*(Cos[e + f*x]/(Sqrt[a + b*Sin[e + f*x]]*Sqrt[c +
 d*Sin[e + f*x]]))], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 -
 d^2, 0]

Rule 3061

Int[((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)])/(Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]*Sqrt[(c_.) + (d_.)*sin
[(e_.) + (f_.)*(x_)]]), x_Symbol] :> Dist[(A*b - a*B)/b, Int[1/(Sqrt[a + b*Sin[e + f*x]]*Sqrt[c + d*Sin[e + f*
x]]), x], x] + Dist[B/b, Int[Sqrt[a + b*Sin[e + f*x]]/Sqrt[c + d*Sin[e + f*x]], x], x] /; FreeQ[{a, b, c, d, e
, f, A, B}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0]

Rule 3124

Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_.)*((A_.) + (B_.)*
sin[(e_.) + (f_.)*(x_)] + (C_.)*sin[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> Simp[(-C)*Cos[e + f*x]*(a + b*Sin[e +
 f*x])^m*((c + d*Sin[e + f*x])^(n + 1)/(d*f*(m + n + 2))), x] + Dist[1/(b*d*(m + n + 2)), Int[(a + b*Sin[e + f
*x])^m*(c + d*Sin[e + f*x])^n*Simp[A*b*d*(m + n + 2) + C*(a*c*m + b*d*(n + 1)) + (C*(a*d*m - b*c*(m + 1)) + b*
B*d*(m + n + 2))*Sin[e + f*x], x], x], x] /; FreeQ[{a, b, c, d, e, f, A, B, C, m, n}, x] && NeQ[b*c - a*d, 0]
&& EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] &&  !LtQ[m, -2^(-1)] && NeQ[m + n + 2, 0]

Rule 4306

Int[(u_)*((c_.)*sec[(a_.) + (b_.)*(x_)])^(m_.), x_Symbol] :> Dist[(c*Sec[a + b*x])^m*(c*Cos[a + b*x])^m, Int[A
ctivateTrig[u]/(c*Cos[a + b*x])^m, x], x] /; FreeQ[{a, b, c, m}, x] &&  !IntegerQ[m] && KnownSineIntegrandQ[u,
 x]

Rubi steps \begin{align*} \text {integral}& = \left (\sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \frac {a A+(A b+a B) \cos (c+d x)+b B \cos ^2(c+d x)}{\sqrt {\cos (c+d x)} \sqrt {a+a \cos (c+d x)}} \, dx \\ & = \frac {b B \sin (c+d x)}{d \sqrt {a+a \cos (c+d x)} \sqrt {\sec (c+d x)}}+\frac {\left (\sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \frac {\frac {1}{2} a (2 a A+b B)+\frac {1}{2} a (2 A b+2 a B-b B) \cos (c+d x)}{\sqrt {\cos (c+d x)} \sqrt {a+a \cos (c+d x)}} \, dx}{a} \\ & = \frac {b B \sin (c+d x)}{d \sqrt {a+a \cos (c+d x)} \sqrt {\sec (c+d x)}}+\left ((a-b) (A-B) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \frac {1}{\sqrt {\cos (c+d x)} \sqrt {a+a \cos (c+d x)}} \, dx+\frac {\left ((2 A b+2 a B-b B) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \frac {\sqrt {a+a \cos (c+d x)}}{\sqrt {\cos (c+d x)}} \, dx}{2 a} \\ & = \frac {b B \sin (c+d x)}{d \sqrt {a+a \cos (c+d x)} \sqrt {\sec (c+d x)}}-\frac {\left (2 a (a-b) (A-B) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \text {Subst}\left (\int \frac {1}{2 a^2+a x^2} \, dx,x,-\frac {a \sin (c+d x)}{\sqrt {\cos (c+d x)} \sqrt {a+a \cos (c+d x)}}\right )}{d}-\frac {\left ((2 A b+2 a B-b B) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \text {Subst}\left (\int \frac {1}{\sqrt {1-\frac {x^2}{a}}} \, dx,x,-\frac {a \sin (c+d x)}{\sqrt {a+a \cos (c+d x)}}\right )}{a d} \\ & = \frac {(2 A b+2 a B-b B) \arcsin \left (\frac {\sqrt {a} \sin (c+d x)}{\sqrt {a+a \cos (c+d x)}}\right ) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}}{\sqrt {a} d}+\frac {\sqrt {2} (a-b) (A-B) \arctan \left (\frac {\sqrt {a} \sin (c+d x)}{\sqrt {2} \sqrt {\cos (c+d x)} \sqrt {a+a \cos (c+d x)}}\right ) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}}{\sqrt {a} d}+\frac {b B \sin (c+d x)}{d \sqrt {a+a \cos (c+d x)} \sqrt {\sec (c+d x)}} \\ \end{align*}

Mathematica [A] (verified)

Time = 0.32 (sec) , antiderivative size = 143, normalized size of antiderivative = 0.74 \[ \int \frac {\left (a A+(A b+a B) \cos (c+d x)+b B \cos ^2(c+d x)\right ) \sqrt {\sec (c+d x)}}{\sqrt {a+a \cos (c+d x)}} \, dx=\frac {\cos \left (\frac {1}{2} (c+d x)\right ) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\sqrt {2} (2 A b+2 a B-b B) \arcsin \left (\sqrt {2} \sin \left (\frac {1}{2} (c+d x)\right )\right )+2 (a-b) (A-B) \arctan \left (\frac {\sin \left (\frac {1}{2} (c+d x)\right )}{\sqrt {\cos (c+d x)}}\right )+2 b B \sqrt {\cos (c+d x)} \sin \left (\frac {1}{2} (c+d x)\right )\right )}{d \sqrt {a (1+\cos (c+d x))}} \]

[In]

Integrate[((a*A + (A*b + a*B)*Cos[c + d*x] + b*B*Cos[c + d*x]^2)*Sqrt[Sec[c + d*x]])/Sqrt[a + a*Cos[c + d*x]],
x]

[Out]

(Cos[(c + d*x)/2]*Sqrt[Cos[c + d*x]]*Sqrt[Sec[c + d*x]]*(Sqrt[2]*(2*A*b + 2*a*B - b*B)*ArcSin[Sqrt[2]*Sin[(c +
 d*x)/2]] + 2*(a - b)*(A - B)*ArcTan[Sin[(c + d*x)/2]/Sqrt[Cos[c + d*x]]] + 2*b*B*Sqrt[Cos[c + d*x]]*Sin[(c +
d*x)/2]))/(d*Sqrt[a*(1 + Cos[c + d*x])])

Maple [A] (verified)

Time = 24.58 (sec) , antiderivative size = 281, normalized size of antiderivative = 1.46

method result size
default \(\frac {\left (B \sqrt {2}\, \sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, b \sin \left (d x +c \right )+2 A \sqrt {2}\, \arctan \left (\tan \left (d x +c \right ) \sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\right ) b +2 B \sqrt {2}\, \arctan \left (\tan \left (d x +c \right ) \sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\right ) a -B \sqrt {2}\, \arctan \left (\tan \left (d x +c \right ) \sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\right ) b -2 A \arcsin \left (\cot \left (d x +c \right )-\csc \left (d x +c \right )\right ) a +2 A \arcsin \left (\cot \left (d x +c \right )-\csc \left (d x +c \right )\right ) b +2 B \arcsin \left (\cot \left (d x +c \right )-\csc \left (d x +c \right )\right ) a -2 B \arcsin \left (\cot \left (d x +c \right )-\csc \left (d x +c \right )\right ) b \right ) \left (\sqrt {\sec }\left (d x +c \right )\right ) \sqrt {a \left (1+\cos \left (d x +c \right )\right )}\, \cos \left (d x +c \right ) \sqrt {2}}{2 d \left (1+\cos \left (d x +c \right )\right ) \sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, a}\) \(281\)
parts \(\frac {\left (A b +B a \right ) \left (\sqrt {\sec }\left (d x +c \right )\right ) \left (\sqrt {2}\, \arctan \left (\tan \left (d x +c \right ) \sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\right )+\arcsin \left (\cot \left (d x +c \right )-\csc \left (d x +c \right )\right )\right ) \cos \left (d x +c \right ) \sqrt {a \left (1+\cos \left (d x +c \right )\right )}\, \sqrt {2}}{d \left (1+\cos \left (d x +c \right )\right ) \sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, a}-\frac {A \left (\sqrt {\sec }\left (d x +c \right )\right ) \arcsin \left (\cot \left (d x +c \right )-\csc \left (d x +c \right )\right ) \sqrt {a \left (1+\cos \left (d x +c \right )\right )}\, \cos \left (d x +c \right ) \sqrt {2}}{d \left (1+\cos \left (d x +c \right )\right ) \sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}}-\frac {B b \left (-\sin \left (d x +c \right ) \sqrt {2}\, \sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}+\sqrt {2}\, \arctan \left (\tan \left (d x +c \right ) \sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\right )+2 \arcsin \left (\cot \left (d x +c \right )-\csc \left (d x +c \right )\right )\right ) \left (\sqrt {\sec }\left (d x +c \right )\right ) \sqrt {a \left (1+\cos \left (d x +c \right )\right )}\, \cos \left (d x +c \right ) \sqrt {2}}{2 d \left (1+\cos \left (d x +c \right )\right ) \sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, a}\) \(350\)

[In]

int((a*A+(A*b+B*a)*cos(d*x+c)+b*B*cos(d*x+c)^2)*sec(d*x+c)^(1/2)/(a+cos(d*x+c)*a)^(1/2),x,method=_RETURNVERBOS
E)

[Out]

1/2/d*(B*2^(1/2)*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*b*sin(d*x+c)+2*A*2^(1/2)*arctan(tan(d*x+c)*(cos(d*x+c)/(1+c
os(d*x+c)))^(1/2))*b+2*B*2^(1/2)*arctan(tan(d*x+c)*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2))*a-B*2^(1/2)*arctan(tan(d
*x+c)*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2))*b-2*A*arcsin(cot(d*x+c)-csc(d*x+c))*a+2*A*arcsin(cot(d*x+c)-csc(d*x+c
))*b+2*B*arcsin(cot(d*x+c)-csc(d*x+c))*a-2*B*arcsin(cot(d*x+c)-csc(d*x+c))*b)*sec(d*x+c)^(1/2)*(a*(1+cos(d*x+c
)))^(1/2)*cos(d*x+c)/(1+cos(d*x+c))/(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*2^(1/2)/a

Fricas [A] (verification not implemented)

none

Time = 13.77 (sec) , antiderivative size = 208, normalized size of antiderivative = 1.08 \[ \int \frac {\left (a A+(A b+a B) \cos (c+d x)+b B \cos ^2(c+d x)\right ) \sqrt {\sec (c+d x)}}{\sqrt {a+a \cos (c+d x)}} \, dx=\frac {\sqrt {a \cos \left (d x + c\right ) + a} B b \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right ) - {\left (2 \, B a + {\left (2 \, A - B\right )} b + {\left (2 \, B a + {\left (2 \, A - B\right )} b\right )} \cos \left (d x + c\right )\right )} \sqrt {a} \arctan \left (\frac {\sqrt {a \cos \left (d x + c\right ) + a} \sqrt {\cos \left (d x + c\right )}}{\sqrt {a} \sin \left (d x + c\right )}\right ) - \frac {\sqrt {2} {\left ({\left (A - B\right )} a^{2} - {\left (A - B\right )} a b + {\left ({\left (A - B\right )} a^{2} - {\left (A - B\right )} a b\right )} \cos \left (d x + c\right )\right )} \arctan \left (\frac {\sqrt {2} \sqrt {a \cos \left (d x + c\right ) + a} \sqrt {\cos \left (d x + c\right )}}{\sqrt {a} \sin \left (d x + c\right )}\right )}{\sqrt {a}}}{a d \cos \left (d x + c\right ) + a d} \]

[In]

integrate((A*a+(A*b+B*a)*cos(d*x+c)+b*B*cos(d*x+c)^2)*sec(d*x+c)^(1/2)/(a+a*cos(d*x+c))^(1/2),x, algorithm="fr
icas")

[Out]

(sqrt(a*cos(d*x + c) + a)*B*b*sqrt(cos(d*x + c))*sin(d*x + c) - (2*B*a + (2*A - B)*b + (2*B*a + (2*A - B)*b)*c
os(d*x + c))*sqrt(a)*arctan(sqrt(a*cos(d*x + c) + a)*sqrt(cos(d*x + c))/(sqrt(a)*sin(d*x + c))) - sqrt(2)*((A
- B)*a^2 - (A - B)*a*b + ((A - B)*a^2 - (A - B)*a*b)*cos(d*x + c))*arctan(sqrt(2)*sqrt(a*cos(d*x + c) + a)*sqr
t(cos(d*x + c))/(sqrt(a)*sin(d*x + c)))/sqrt(a))/(a*d*cos(d*x + c) + a*d)

Sympy [F]

\[ \int \frac {\left (a A+(A b+a B) \cos (c+d x)+b B \cos ^2(c+d x)\right ) \sqrt {\sec (c+d x)}}{\sqrt {a+a \cos (c+d x)}} \, dx=\int \frac {\left (A + B \cos {\left (c + d x \right )}\right ) \left (a + b \cos {\left (c + d x \right )}\right ) \sqrt {\sec {\left (c + d x \right )}}}{\sqrt {a \left (\cos {\left (c + d x \right )} + 1\right )}}\, dx \]

[In]

integrate((A*a+(A*b+B*a)*cos(d*x+c)+b*B*cos(d*x+c)**2)*sec(d*x+c)**(1/2)/(a+a*cos(d*x+c))**(1/2),x)

[Out]

Integral((A + B*cos(c + d*x))*(a + b*cos(c + d*x))*sqrt(sec(c + d*x))/sqrt(a*(cos(c + d*x) + 1)), x)

Maxima [F]

\[ \int \frac {\left (a A+(A b+a B) \cos (c+d x)+b B \cos ^2(c+d x)\right ) \sqrt {\sec (c+d x)}}{\sqrt {a+a \cos (c+d x)}} \, dx=\int { \frac {{\left (B b \cos \left (d x + c\right )^{2} + A a + {\left (B a + A b\right )} \cos \left (d x + c\right )\right )} \sqrt {\sec \left (d x + c\right )}}{\sqrt {a \cos \left (d x + c\right ) + a}} \,d x } \]

[In]

integrate((A*a+(A*b+B*a)*cos(d*x+c)+b*B*cos(d*x+c)^2)*sec(d*x+c)^(1/2)/(a+a*cos(d*x+c))^(1/2),x, algorithm="ma
xima")

[Out]

integrate((B*b*cos(d*x + c)^2 + A*a + (B*a + A*b)*cos(d*x + c))*sqrt(sec(d*x + c))/sqrt(a*cos(d*x + c) + a), x
)

Giac [F(-1)]

Timed out. \[ \int \frac {\left (a A+(A b+a B) \cos (c+d x)+b B \cos ^2(c+d x)\right ) \sqrt {\sec (c+d x)}}{\sqrt {a+a \cos (c+d x)}} \, dx=\text {Timed out} \]

[In]

integrate((A*a+(A*b+B*a)*cos(d*x+c)+b*B*cos(d*x+c)^2)*sec(d*x+c)^(1/2)/(a+a*cos(d*x+c))^(1/2),x, algorithm="gi
ac")

[Out]

Timed out

Mupad [F(-1)]

Timed out. \[ \int \frac {\left (a A+(A b+a B) \cos (c+d x)+b B \cos ^2(c+d x)\right ) \sqrt {\sec (c+d x)}}{\sqrt {a+a \cos (c+d x)}} \, dx=\int \frac {\sqrt {\frac {1}{\cos \left (c+d\,x\right )}}\,\left (B\,b\,{\cos \left (c+d\,x\right )}^2+\left (A\,b+B\,a\right )\,\cos \left (c+d\,x\right )+A\,a\right )}{\sqrt {a+a\,\cos \left (c+d\,x\right )}} \,d x \]

[In]

int(((1/cos(c + d*x))^(1/2)*(A*a + cos(c + d*x)*(A*b + B*a) + B*b*cos(c + d*x)^2))/(a + a*cos(c + d*x))^(1/2),
x)

[Out]

int(((1/cos(c + d*x))^(1/2)*(A*a + cos(c + d*x)*(A*b + B*a) + B*b*cos(c + d*x)^2))/(a + a*cos(c + d*x))^(1/2),
 x)